SPECIFIC HEAT OF LIQUIDS AT CONSTANT PRESSURE
INVESTIGATED BY THE METHOD OF CONTINUOUS
HEATING IN THE QUASIREGULAR REGIME

V. A, Lavrov and E. P. Sheludyakov

The essence of the method consists in comparing the heating curves of the test liquids and a standard
liquid. The method was first proposed by Osmond for investigating internal transformations in solids [1].
Later on, it was used by Turovskii and Bartenev [2] to investigate the specific heat of metals. In the Tur-
ofskii—Bartenev apparatus two samples, of exactely the same size and shape, of the investigated and
standard (of known specific heat) metals with a blackened surface were cooled under identical conditions
(in the open air)., The dependence of the temperatures of both specimens on time was recorded, and the
specific heat of the test specimen C, was found from the formula '

G (dt [ dT)s
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Here, C, and G, are the specific heat and weight of the standard
material, G; is the weight of the test specimen, t is temperature, 7 time,
and dt/dr are the corresponding cooling rates.

Subsequently, the method of regular heating and cooling was used
by a number of authors to investigate the thermal conductivity of metals

[31.

Our measuring apparatus was designed on the basis of the following
considerations. By analyzing the solution of the problem for a spherical
isotropic specimen, whose density, specific heat, and thermal conductibity
do not depend on temperature, with a constant inward-directed heat flux
at the surface it is possible to estimate the time starting from which the
temperature field in the specimen may be assumed to be quasistationary.
For this time the Fourier number

aTty
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The maximum temperature drop between the center of the sphere
and its surface is

3 R dt
= At:*BTE (3)

Y Here g is the thermal diffusivity and R the radius of the sphere.
7 The temperature averaged over volume (reference temperature) is

> < R di
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Fig. 1 where t is the temperature at the surface of the specimen.
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Assigning a satisfactory heating rate of the order of 6-10 deg/h, we make the necessary estimates.
For a sphere with a radius of 30 mm filled with water 7; ~ 0.9 hr, At ~ 1°C. The thermal diffusivity of
Freouns is 3-4 times iess than that of water, and correspondingly we have 7, ~3 hr, At ~ 3.5°C,

Clearly, the results are unsatisfactory. Good results are obtained for a sphere with a radius of 10
mm. The time 7 is then reduced to 10~20 min, and the temperature drop At to teuths of a degree.

In this case, however, the relationship between the specific heats of the calorimeter and the liguid
filling it sharply deteriorates.

Nonetheless, the same result for 7, and At is obtaived if we counsider not a liguid-filled sphere, but
a spherical layer between two coaxial spherical shells. In this case it is even possible to reduce the
thickness of the layer to 5 mm, while retaining a favorable relationship between the specific heats of the
calorimeter and the test liquid. )

The experimental calorimetric systemis illustrated in Fig. 1. The inner 2 and outer 1 calorimeter
shells are made of 1IKh18N8T stainless steel 0.3 mm thick, the corresponding diameters being 50 and 60
mm. The exterior shell 3 is made of copper 4 mm thick. The air gap is 10 mm wide. A stainless-steel
capillary 4, 1 mm in diameter, connects the calorimeter with the filling system and a vacuum pump. A
constant pressure is maintained by a thermocompressor. The entire calorimetric system is attached to
the cover of the constant-temperature chamber 5.

The ends of chromel-alumel thermocouples 6, made of 0.3-mm wire, are attached to shell 1. These
ends are inserted in thin sleeves (6 = 0.2 mm) to ensure reliable contact with the surface of the sphere.
One thermocouple forms part of a differential thermocouple, whose other end is imbedded in the exterior
shell 3. The other thermocouple is used to measure the temperature at the calorimeter surface.

Estimates of the Biot namber of the heat receiver in different regimes give values on the interval
B ~ 0.003-0.03. This makes it possible to measure the temperature of the exterior shell at one point,

The reference temperature is determined by introducing a correction in accordance with Eq. ().

As a result of heating a temperature difference, which is subsequently kept constant, is created
between the copper shell 3 and shell 2 of the calorimeter; a R-306 potentiometer is used for monitoring
purposes, but at this stage regulation is manual, with a galvanometer serving as null detector.

Ounce the operator has acquired a certain skill, the zero drift does not exceed 0.05°C at a tenmpera-
ture difference of 6-12°C.

The experiment consists in recording the heating curves of the empty calorimeter and the calorim-
eter filled with the calibration liquid (water) and the test liquid. The liquid is heated continuously up
to the saturation line. The formula for the specific heat of the test liquid C, takes the form

b2 i'/tg'—-i 22) T 1

G=C—rrmr—1 C=Cy v 5)

Here, C; is the specific heat of the calibration liquid, v, and v, are the specific volumes of the test
and calibration liquids, t' is the empty calorimeter heating rate, t'; and t'; are the heating rates for the
calorimeter filled with the calibration and test liquids, 7} are the reciprocals of the heating rates.
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The experimental t(7),t,;(r), and t5(7) curves, recorded at a temperature difference between the
calorimeter and the shell of the order of6°C, are presented in Fig. 2. The time was measured correct
to 0.2~0.3 sec with a stopwatch. The thermocouple emf was measured with the R~306 potentiometer as
the galvanometer light spot passed through zero.

In view of the considerable difference between the heating rates of the empty and the liquid-filled
calorimeter, the temperature measurements are affected by dynamic distortions. Their influence on the
accuracy of determination of the specific heat is slight only at commensurable heating rates of the empty
and liquid-filled calorimeters. A rough estimate of the constant of thermal inertia of the heat receivers
makes it possible to establish an upper limit for the heating rate difference such as to ensure an accuracy
of £+ 5% in determining the specific heat. This limit is roughly equal to 60-80 deg/h when suitable correc-
tions are introduced.

However, it should be taken into account that as the specific heat of the calorimeter decreases there
is a considerable reduction of the relative error that it introduces into the result, as follows from an
analysis of the calculation formula.

The relative errors of the heating rates are calculated from the formulas

P " ;
5t = (t,—__tjl—)?;,l__—t) At', 8ty = =) AtyY, B8 = =) Aty (6)
In determining the reference temperature without introducing a correction, in accordance with Eq.
{4) the maximum possible error is less than 0.1% in view of the weak temperature dependence. On the
other hand, given two calibration liquids, it is generally possible to eliminate the specific heat of the
calorimeter from the calculation formula. It then becomes unnecessary to record the heating curve of the
empty calorimeter. In this case, we employ the formula

Cc C
Cs= FU_STZ [7,71 (13 —w') — 7,3“ (ts’ — n’)] (7)
Here, 7'; are the reciprocals of the heating rates; the subscripts 1 and 2 relate to the two calibration
liquids, and the subscript 3 to the test liquid.

We used the apparatus described above to measure the specific heat of Freon 21 on the saturation line
up to pressures of 11 bar. The measurements were made at two different temperature differences between
the shell and the calorimeter: ~ 6 and 12°C. The heating rates were determined directely in uV/sec. Data
on the density of Freon 21 on the saturation line were taken from [4]. The results of the measurements are
presented in Fig. 3, where 3 represents the series of points obtained at a temperature drop ~ 12°C, 4 those
obtained at ~ 6°C. The same figure also includes the experimental data obtained by Benning on the tempera-
ture interval from —12.1 to 55.2°C and by the Leningrad Technical Institute of the Refrigeration Industry
(LTIKhP) on the interval from —64 to 59°C. The accuracy of the LTIKhP data is estimated by the authors
at + 1%.

As may be seen from Fig. 3, there is satisfactory agreement between our results and the earlier
data. The maximum deviation in the region of overlap does not exceed 0.6%. After correlating the results
we obtained an empirical expression for the specific heat (in kJ/kg-deg) on the saturation line as a function
of temperature (°C):

Gp = 1.0342 | 3.419.1074 ¢ 4 9.578.107%¢2 (8)

for the temperature interval 34-90°C.
The maximum deviation from the curve was 0,7%, the mean-square error 0.28%.

The error of the results obtained, allowing for the calibration error and possible systematic errors,
does not exceed £0.5%. The chief contribution to the error is introduced in differentiating the time depen-
dence of the temperature during heating. It should be kept in mind, however, that these curves are quite
smooth (the scatter does not exceed 0.01-0.02%) and very well reproducible. Thus, in four repeat measure-
ments of the specific heat of Freon 21 we recorded the same ty(7) dependence. The maximum deviation of
the heating time for a constant temperature difference of the order of 30°C was less than + 0.05% with-
out corrections.
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Thus, the method is characterized by the simplicity of the apparatus and the experimental technique,
as well as by its speed and the accuracy of the results.
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